Defense-Related Responses in Fruit of the Nonhost Chili Pepper against Xanthomonas axonopodis pv. glycines Infection
نویسندگان
چکیده
Xanthomonas axonopodis pv. glycines (Xag ) is a necrotrophic bacterial pathogen of the soybean that causes bacterial pustules and is a nonhost pathogen of the chili pepper. In the current study, chili pepper fruit wound inoculated in planta with Xag 8ra formed necrotic lesions on the fruit surface and induced several structural and chemical barriers systemically in the fruit tissue. The initial defense response included programmed cell death of necrotizing and necrotized cells, which was characterized by nuclear DNA cleavage, as detected by TUNEL-confocal laser scanning microscopy (CLSM), and phosphatidylserine exposure on cell walls distal to the infection site, as detected by Annexin V FLUOS-CLSM. These two responses may facilitate cell killing and enhance transportation of cell wall materials used for cell wall thickening, respectively. The cells beneath the necrotic tissue were enlarged and divided to form periclinal cell walls, resulting in extensive formation of several parallel boundary layers at the later stages of infection, accompanying the deposition of wall fortification materials for strengthening structural defenses. These results suggest that nonhost resistance of chili pepper fruit against the nonhost necrotrophic pathogen Xag 8ra is activated systematically from the initial infection until termination of the infection cycle, resulting in complete inhibition of bacterial pathogenesis by utilizing organ-specific in situ physiological events governed by the expression of genes in the plant fruit organ.
منابع مشابه
Fluctuation in some enzymes related to antioxidant defense system in common bean against Xanthomonas axonopodis pv. Phaseoli
Antioxidant enzymes play an important role in plant defense against pathogenic agents. Following the identification of the pathogen, plants produce active oxygen species (ROS) as one of their first defense responses. To maintain the balance of ROS levels and prevent their harmful effects, plants produce antioxidant peroxidase (POX), catalase (CAT), ascorbate peroxidase (APX) and superoxide dism...
متن کاملThe folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis.
BACKGROUND AND AIMS The use of vitamins including vitamin B1, B2 and K3 for the induction of systemic acquired resistance (SAR) to protect crops against plant pathogens has been evaluated previously. The use of vitamins is beneficial because it is cost effective and safe for the environment. The use of folate precursors, including ortho-aminobenzoic acid, to induce SAR against a soft-rot pathog...
متن کاملRole of rpfF in virulence and exoenzyme production of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean.
Ten strains of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule of soybean, which were isolated from various soybean growing regions of Thailand, produced an extracellular diffusible factor (DSF) related to a well-characterized quorum sensing molecule produced by other Xanthomonas spp. Genomic DNA of the 10 strains of X. axonopodis pv. glycines contained rpfF, a gene e...
متن کاملHigh-Quality Genome Sequence of Xanthomonas axonopodis pv. glycines Strain 12609 Isolated in Taiwan
The genomic sequence was determined for Xanthomonas axonopodis pv. glycines strain 12609, isolated in Taiwan. Based on the genome sequence, we predicted the encoded genes, rRNA, tRNA, a plasmid sequence, secretion systems, cyclic GMP- and cyclic di-GMP-mediated pathways, and the gene cluster rpfABCHGDE (regulation of pathogenicity factor).
متن کاملHigh-Quality Draft Genome Sequences of Xanthomonas axonopodis pv. glycines Strains CFBP 2526 and CFBP 7119
We report here the high-quality draft genome sequences of two strains of Xanthomonas axonopodis pv. glycines, the causal agent of bacterial pustule on soybeans. Comparison of these genomes with those of phylogenetically closely related pathovars of Xanthomonas spp. will help to understand the mechanisms involved in host specificity and adaptation to host plants.
متن کامل